First, the U.S. has always prided itself in being a world leader. We built the world’s first nuclear reactor, and since that time, countries around the world have looked to our country for leadership in using nuclear in safe and proliferation-resistant ways.

As we decommission reactors and fail to replace them, the world is looking to other places, like China, India and Russia, for leadership. According to World Nuclear Association, China is increasing nuclear generation capacity by seventy percent. As the U.S. commercial nuclear declines, U.S. standards for nuclear safety and security will no longer be the international norm.

We have gradually forfeited our nuclear leadership position over the last twenty years because of our inability to efficiently construct plants like Plant Vogtle in the U.S. That stark fact is changing the geopolitical landscape by realigning government relationships.

Remember, the U.S. introduced nuclear power to France over fifty years ago which helped bond our governments. In today’s world, it’s Russia selling new reactors to countries and forming long term relationships with those countries that will last for at least two generations. I believe this will change alliances in the Middle East, Africa, India, and around the world — and that impacts our national security.

Meanwhile, we wring our hands in the U.S., citing concerns about the “market” and our fear of picking economic winners and losers and ignoring the fact that Russian, Chinese, and French nuclear infrastructures are state owned.

They are selling to state owned utilities or ministries in these developing nations. So literally, these are government to government relationships. The result is that we fall further behind in this critical area.

Second, while we normally think about nuclear technology in terms of arming a weapon, let’s not forget the reactor technology that gives military advantage to naval vessels.

According to the National Nuclear Security Administration, this includes our ten aircraft carriers, fifty-five attack submarines, and eighteen strategic submarines. The nuclear technology allows these vessels to travel one million miles before refueling.

Former Secretary of Energy Ernie Moniz recently pointed out the strong overlap between the Navy supply chain and the commercial nuclear energy sector. The Navy workforce needs U.S. citizens who have security clearances.

Yet, according to the American Society for Engineering, more than half of the workforce has security clearances.

We wring our hands, citing concerns about the ‘market’ and our fear of picking economic winners and losers.

(Cont. on page 66)
Representing EPRI, Chris Holmes discussed EPRI’s end-use load data initiative update, and Ken Schiermeyer of San Diego Gas & Electric gave survey results from the LR&A’s basics course, which is taught every spring. A major block of time in the agenda was allowed for the Committee to discuss both its current and future states, including membership, committee projects, a greater awareness of AEIC’s Load Research & Analytics Committee within AEIC member companies, and future initiatives the Committee will consider undertaking.

In addition to its many educational events, the Committee will meet again in late October or early November in Asheville, N.C.

Recently, China beat the rest of the world to a deployable Generation IV reactor which should be complete by the end of this year.

It’s a pebble bed High Temperature Gas Reactor that is inherently safe, even better than passively safe. The U.S. commercial nuclear plant fleet is the world’s oldest and the average age of a U.S commercial nuclear reactor is thirty-six years.

The plant life was for forty years, with renewals of those license on eighty-four of our ninety-nine reactors for an additional twenty years. That extension essentially kept our nuclear program on life support.

Only one state remains on the path to build new nuclear generation and keep the U.S. moving forward – and that is Georgia. It is against great odds that we persist. And it will only be with God’s help that we finish.

Finally, don’t forget that nuclear reactors produce medical isotopes for imaging and cancer treatments. Bruce Power recently made an announcement that they are expanding their medical isotope production capabilities using their commercial reactors in Canada.

China is now introducing their new reactor designs to the world market and will most likely sell them and build those long-term relationships as well.

Regulation for the Unregulated

live in a constantly changing world.

New technologies, financial realities, environmental laws, business relationships and other internal and external factors, affecting the regulated utility, have in the past and can individually or collectively be in the future, the drivers for regulatory policy change.

Regulation, although seemingly permanent, has been in the past and will be in the future, subject to change. Whether those changes are beneficial or detrimental to specific non-utility business interests will depend a lot on a business understanding and participating in regulation.